
Density matrix description of transport and gain in
quantum cascade lasers in a magnetic field

Ivana Savíc∗, Nenad Vukmirovíc∗, Zoran Ikoníc∗, Dragan Indjin∗ , Robert W. Kelsall∗, Paul Harrison∗,
and Vitomir Milanovíc†

∗ School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
†Faculty of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia

Email: I.Savic@leeds.ac.uk

Abstract—A density matrix theory of electron transport and
optical gain in quantum cascade lasers in an external magnetic
field is formulated. Starting from a general quantum kinetic treat-
ment, we describe the intra- and inter-period electron dynamics
at the non-Markovian, Markovian and Boltzmann approximation
levels. Interactions of electrons with longitudinal optical phonons
and classical light fields are included in the present description.
The non-Markovian calculation for a prototype structure reveals
a significantly different gain spectra in terms of linewidth and
additional polaronic features in comparison to the Markovian
and Boltzmann ones. Despite strongly controversial interpre-
tations of the origin of the transport processes in the non-
Markovian or Markovian and the Boltzmann approaches, they
yield comparable values of the current densities.

I. I NTRODUCTION

Experimental interest in the quantum cascade laser (QCL)
performance in a magnetic field has stimulated theoretical
efforts to describe the influence of a magnetic field on the
physical processes involved. The majority of theoretical stud-
ies have been focused on the modeling of various scattering
rates (electron-phonon, electron-electron, interface roughness)
between the Landau levels (LLs) stemming from the upper
and lower laser levels [1], [2], [3]. Also, a semiclassical
model of the electron transport in a magnetic field based
on the Boltzmann equation has been proposed [4]. Currently,
no experimental or theoretical data on coherent phenomena
in QCLs in a magnetic field are available. Since the energy
spectra in such structures is discrete, it is reasonable to
expect that coherent effects are more significant than for
QCLs without magnetic field. The aim of this work is to
present a quantum-mechanical theory of transport and gain
properties of QCLs in an external magnetic field, which takes
into account both phase coherence and incoherent scattering
processes. A comprehensive analysis is performed for an
example GaAs/Al0.3Ga0.7As QCL and nonequilibrium steady
state results obtained from quantum kinetic, Markovian and
Boltzmann approaches are compared.

II. T HEORETICAL CONSIDERATIONS

We derived quantum kinetics equations for QC structures in
a magnetic field, based on the density matrix formalism [5],
which include interaction of electrons with longitudinal optical
(LO) phonons and optical field [6]. The quantum-kinetic dy-
namics is essentially non-Markovian, since the time evolution

of the density matrix elements depends on their values at
earlier times i.e. on the memory of the system. Furthermore,
we obtained the corresponding equations in the Markovian
approximation, from which the semiclassical Boltzmann trans-
port equations can be recovered. The periodicity of the QCL
structure was accounted for. The current density in the non-
Markovian and Markovian treatment may be estimated from
the expectation value of the carrier drift velocity [7]. The
gain spectra may be estimated from the linear response of
nonequilibrium stationary populations and polarizations to a
small optical perturbation [8].

III. N UMERICAL RESULTS AND DISCUSSION

As a prototypical system, we consider a QCL design which
comprises a three-level scheme, and employs LO-phonon
depopulation of the lower laser level to the ground state. No
injector region is present and efficient injection into the upper
laser level is enabled by its alignment with the ground level of
the preceding period. The QCL period consists of two QWs
(see Fig. 1), one of which confines the ground and lower laser
levels, whose energy difference is set to be approximately
one LO phonon energy (36.9 meV). The upper laser level
is localized in the other well. The transition energy between
the upper and lower laser levels is15.2 meV, and the energy
difference between the ground state and the upper laser level
of the following period is2.6 meV.

For discrete energy spectra in QCLs in a magnetic field,
broadening of LLs needs to be taken into account. Its self-
consistent calculation in the non-Markovian approach for
complex structures like QCLs would result in a computa-
tionally inaccessible task. Therefore, we have to resort to a
phenomenological description of broadening in all three ap-
proaches used. In the non-Markovian treatment, a damping pa-
rameter̄hγph describing collisional broadening appears, while
in the Markovian and Boltzmann description, a Lorentzian
with the full width at half maximum (FWHM)γ is accounted
for. In order to give a fair comparison between the different
models presented here, we restrict our further analysis to
a choice of the pairs of phenomenological parameters for
which the populations are almost identical (γ = 2 meV and
h̄γph = 1 meV; γ = 4 meV andh̄γph = 2 meV), and then
we compare the results for other physical quantities.
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Fig. 1. A schematic diagram of the conduction band profile, size-quantized
energy levels from which Landau levels originate and squared wave functions
for one full period and parts of adjacent periods of the GaAs/AlGaAs QCL for
zero magnetic field and an electric field of16.2 kV/cm. States1 and1′ (solid
line), 2 (dash-dotted line),3 and3′′ (dashed line) denote the ground, lower
laser and upper laser levels, respectively. State1′ belongs to the preceding
period, while state3′′ belongs to the following period.
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Fig. 2. Optical gain vs energy for a magnetic field of4 T. Solid, dashed and
dash-double dotted lines represent non-Markovian (NM) (h̄γph = 1 meV),
Markovian (M) (γ = 2 meV) and Boltzmann (B) (γ = 2 meV) results,
respectively. Left: The energy range is in the vicinity of the optical transition
energies. Right: The energy range is in the vicinity of one longitudinal optical
phonon energy.

The gain spectra for a magnetic field of4 T in the energy
range close to the optical transition energies and one LO
phonon energy, are shown in Fig. 2. The gain was calculated
for the non-Markovian (̄hγph = 1 meV), Markovian and
Boltzmann (γ = 2 meV) dynamics. The modal gain obtained
from the Boltzmann theory, has identical major features as
the one predicted from the Markovian approach, for the same
value of FWHM. Disregarding nondiagonal scattering and
dephasing processes in the Boltzmann model, which affect the
gain linewidth, results only in a quantitative modification of
the Markovian prediction. In the case of the non-Markovian
dynamics, the gain linewidth is significantly decreased for
optical transition energies in comparison to the corresponding
Markovian and Boltzmann estimates (≈ 10 times). This result
might seem somewhat unexpected because scattering and
dephasing are increased compared to the Markovian treatment
by including the memory of the interaction process. However,
it is due to the fact that in the non-Markovian approach, the
broadening caused by the scattering terms is energy dependent.

In the Markovian limit, energy renormalizations, describing
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Fig. 3. Left: Current density vs magnetic field dependence. Left: Solid,
dashed and dash-dotted lines represent non-Markovian (NM) (h̄γph =
1 meV), Markovian (M) (γ = 2 meV) and Boltzmann (B) (γ = 2 meV)
results, respectively. Right: Solid, dashed and dash-dotted lines represent non-
Markovian (̄hγph = 2 meV), Markovian (γ = 4 meV) and Boltzmann
(γ = 4 meV) results, respectively.

the polaron corrections to the band structure, are ignored.
However, the polaron shift is always included in the quantum-
kinetic treatment. It is more prominent for the energy transi-
tions close to one LO phonon energy (∼ 1 meV), but it is also
present for the optical transition energies (∼ 0.4 meV).

The current densities as functions of magnetic field, calcu-
lated using the non-Markovian (h̄γph = 1 meV andh̄γph =
2 meV), Markovian and Boltzmann description (γ = 2 meV
andγ = 4 meV), are shown in Fig. 3. In the Markovian and
non-Markovian approach, diagonal density matrix elements
do not contribute to the total current [7], [9]. Therefore,
the electron transport is entirely due to nondiagonal density
matrix contributions i.e. scattering induced phase coherences
between the laser states. This quantum-mechanical picture
of completely coherent current is in a stark contrast with
the semiclassical picture of transport through scattering tran-
sitions. However, both descriptions give similar results, see
Fig. 3. Here, the nondiagonal density matrix element are
considerably smaller in comparison to the diagonal ones,
which results in comparable values of the current density [9].

REFERENCES

[1] C. Becker, A. Vasanelli, C. Sirtori, and G. Bastard, Phys. Rev. B69,
115328 (2004).

[2] K. Kempa, Y. Zhou, J. R. Engelbrecht, P. Bakshi, H. I. Ha, J. Moser,
M. J. Naughton, J. Ulrich, G. Strasser, E. Gornik, and K. Unterrainer,
Phys. Rev. Lett.88, 226803 (2002).

[3] A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard,
and C. Sirtori, Phys. Rev. B73, 085311 (2006).
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