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Quantum cascade lasers (QCL)

Si/SiGe conduction band

Effective mass approximation (EMA)

Conduction band edge is 
located in the Δ valleys in 
k-space
In a 2-dimensional 
heterostructure (i.e. free 
motion over xy plane), 
strain and effective mass 
anisotropy splits this 
degeneracy into two Δ

z
 and 

four Δ
x,y 

valleys

Δ
z
 states have basis components with wave 

vectors centred around either Δ
z 
valley

Mixing occurs between basis components 
reflected by interfaces normal to z-direction
This mixing splits the degeneracy of Δ

z 
states

Valley splitting is a decreasing, oscillatory function of well width.
Plot shows splitting in 
quantum well (QW) with Si 
wells and Si

0.5
Ge

0.5
 barriers 

on Si
0.8

Ge
0.2

 substrate
1ML = half lattice constant
Ge diffusion modelled for 
3 to 4 ML diffusion length
Diffuse interfaces are 
modelled as piecewise 
linear gradings in atomistic 
simulations
EMA results agree with 
EPM (sample data in plot)
Splitting decreases as 
interfaces are smoothed

Faster than atomistic methods e.g. empirical 
pseudopotential model (EPM)[1]
Usually requires fitting parameters for valley 
splitting[2]
Wave function for Δ

z
 states is weighted sum of 

basis components from each valley:

For symmetrical confining potentials, the double 
valley EMA is self-contained.[3]  Weighting 
coefficients are

A splitting potential term may be added to the 
effective mass Hamiltonian.  
It can be shown that this is a product of 
conduction band envelope potential and an 
oscillatory function of valley location:

We have shown that even for slightly 
asymmetrical structures, the DVEMA agrees well 
with the EPM.[4]

Graph below shows EPM model of valley splitting in lowest pair of Si/SiGe superlattice 
(SL) minibands as function of well width.
Constant 4ML, Si

0.5
Ge

0.5
 barrier and variable width Si well on Si

0.8
Ge

0.2
 substrate.  Well 

widths up to around 5.4nm are simulated.
Inset shows that the miniband in a SL approximates a “miniband” in a QCL.  50 periods 
of the envelope potential were used to generate the plotted EMA Schrödinger solution.

Applied electric field weakens confinement on one side of 
well
Splitting is independent of well width at high fields

Conclusions
Splitting is decreasing, oscillatory function of QW width at 
low electric field
EMA works well in symmetric structures
Increases at high electric field and is independent of width
Splitting also decreases with well width in unbiased SLs
Very low splitting in wide, unbiased QWs such as those in 
optically pumped lasers
Significant effect in strongly biased narrow QWs and 
narrow well SLs.  May affect n-type Si/SiGe QCLs

SL splitting decreases 
rapidly with well width
Oscillations are 
smaller than QW plot 
above, but magnitude 
is larger overall
In QCLs, “miniband” 
states  are not 
continuous, but are 
actually closely spaced 
discrete states.
QCL solution is 
computationally 
demanding but is 
located between the 
SL and QW cases.
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