Thermal modelling of terahertz quantum-cascade lasers
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Introduction

» The thermal properties of THz QCLs play a crucial role in determining
the device performance.

» THz QCLs have inferior temperature performance compared to MIR
devices due to the difficulty in achieving selective injection and
depopulation of the upper and lower laser levels at higher temperatures.
+ Additionally, since the photon energy is less than the LO phonon
energy, at high temperatures, thermally activated LO phonon emission
can seriously reduce the upper laser level lifetime.

» Coupled with these facts, the cross-plane thermal conductivity of QCL
active regions is reduced compared to bulk due to their multilayer nature
and makes heat extraction from the active region difficult.

* THz QCLs particularly suffer due to the large active region thickness
and increased number of interfaces which increases the thermal
resistance.

» The optical waveguide configuration also plays an important role in
determining the thermal properties of the device.

Theory and Experiment

* Investigated the thermal properties of a
surface-emitting THz QCL with metal-metal
(MM) optical waveguide.

* Local-lattice temperature measured on
top of the device active region using a
microprobe band-to-band PL technique [1].
« Calibration curves obtained at ‘device-off’
by measuring PL while varying T,,.

» Comparing the shift of the main PL peak
with the calibration curves allows the lattice
temperature to be extracted.

* Heat flow simulated using steady-state
two- and three-dimensional anisotropic
thermal models.

& [KVT]+ Q =0 * Solved using a finite-difference method
and successive over-relaxation technique.
* Model takes in account temperature and
doping dependent thermal conductivities.

Device Thermal Resistance
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« Lattice temperature rise measured in central aperture of DFB at a heat
sink temperature of T,,= 80 K for a range of electrical powers*.

« Linear fit to data gives rise to a thermal resistance of 26.17 K/W.

+ Similar to previously extracted values of thermal resistance for edge-
emitting THz QCLs with MM optical waveguides [2].

Cross-plane Thermal Conductivity
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» Temperature dependent cross-plane thermal conductivity extracted by
fitting simulations to measured data — k = 21.207-0-288 W/(m K).

» Good agreement with measured values of GaAs/AlAs superlattices [3].
» Decreasing function of temperature could be limiting factor in the
temperature performance of all GaAs-based QCLs?

Comparison of Optical Waveguides
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* Normalised (R* = R x S/d) thermal resistances of MM and semi-
insulating surface-plasmon (SISP) optical waveguides simulated.

* At low heat sink temperatures, SISP waveguides have smaller Ry
due to higher thermal conductivity of the Sl substrate.

* MM waveguides get progressively better at higher values of T.

Longitudinal Temperature Distribution
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« Longitudinal temperature distribution simulated at P =2.1 W.

« Insulator/metal covered facets open up longitudinal heat flow
channels.

» Suggests electroplated Gold on sidewalls could improve temperature
performance although this will depend on the ridge aspect ratio.
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